

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Solvent Effect on the Isotopic Ratios v_{OH}^o/v_{OD} and A_{OH}/A_{OD} in a Tetrachlorosubstituted Mannich Base

M. Rospenk^a; Th. Zeegers Huyskens^b

^a Institute of Chemistry, University of Wroclaw, Wroclaw, Poland ^b Department of Chemistry, University of Leuven, Heverlee, Belgium

To cite this Article Rospenk, M. and Huyskens, Th. Zeegers(1987) 'Solvent Effect on the Isotopic Ratios v_{OH}^o/v_{OD} and A_{OH}/A_{OD} in a Tetrachlorosubstituted Mannich Base', *Spectroscopy Letters*, 20: 2, 177 — 186

To link to this Article: DOI: 10.1080/00387018708081538

URL: <http://dx.doi.org/10.1080/00387018708081538>

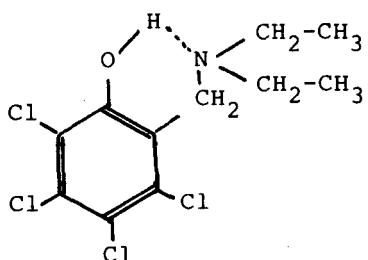
PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

SOLVENT EFFECT ON THE ISOTOPIC RATIOS ν_{OH}^O/ν_{OD} AND A_{OH}/A_{OD}
IN A TETRACHLOROSUBSTITUTED MANNICH BASE


M. Rospenk* and Th. Zeegers-Huyskens**

*Institute of Chemistry, University of Wroclaw
ul. F. Joliot-Curie 14, 50-383 Wroclaw, Poland

**Department of Chemistry, University of Leuven
Celestijnlaan 200F, 3030 Heverlee, Belgium

INTRODUCTION

Mannich bases are compounds formed from phenols and amines, characterized by intramolecular hydrogen bonds whose strength depends on the substituent implanted on the phenol ring; moreover, as shown by uv measurements, the strength of the interaction for a given phenol derivative depends strongly on the solvent¹⁻³. In this work, we have studied the ir spectra of 2,3,4,5-tetrachloro-6-[(diethylamino)methyl]phenol (TCMB_H)

and the analogous O-deuterated compound (TCMB_D) in several organic solvents. The uv spectra show one main band lying at 304-305 nm with a shoulder of low intensity at

330 nm, indicating that almost all the hydrogen bonds are of the OH...N type; in acetonitrile, a second band at 330 nm was detected and in this solvent about 20% of proton transfer complexes are formed at 298 K⁴. The dipole moment of TCMB_H dissolved in benzene (5.10 D)⁵ suggests however that the OH...N bond is strong, in agreement with infrared studies performed on similar molecules^{6,7}.

EXPERIMENTAL

The ir spectra were recorded with a Perkin-Elmer 580B spectrophotometer. The concentrations of TCMB ranged from 0.1 to 0.4 M and the cell thickness from 0.01 to 0.04 cm. The synthesis and deuteration of the product, the purification of the solvents and the experimental procedure were described in a previous work⁷.

RESULTS AND DISCUSSION

In all the solvents, the ν_{OH} band is broad and characterized by two main components, observed around 2500 and 1900 cm^{-1} and depending upon the nature of the solvent (figure 1). The intensity ratio of these two absorptions depends on their separation and this strongly suggests that they originate from a Fermi resonance. In the deuterated derivative, one main absorption was observed (figure 2).

Table 1 lists the wavenumbers of the two bands (ν_{OH}^S and ν_F), their separation (Δ) and intensity ratio (R) along with the ν_{OD} values observed in the deuterated compound.

The energy separation between the perturbed levels can be expressed by

$$\Delta = (\Delta_0^2 + 4w^2)^{1/2}$$

where Δ_0 represents the separation between the harmonic

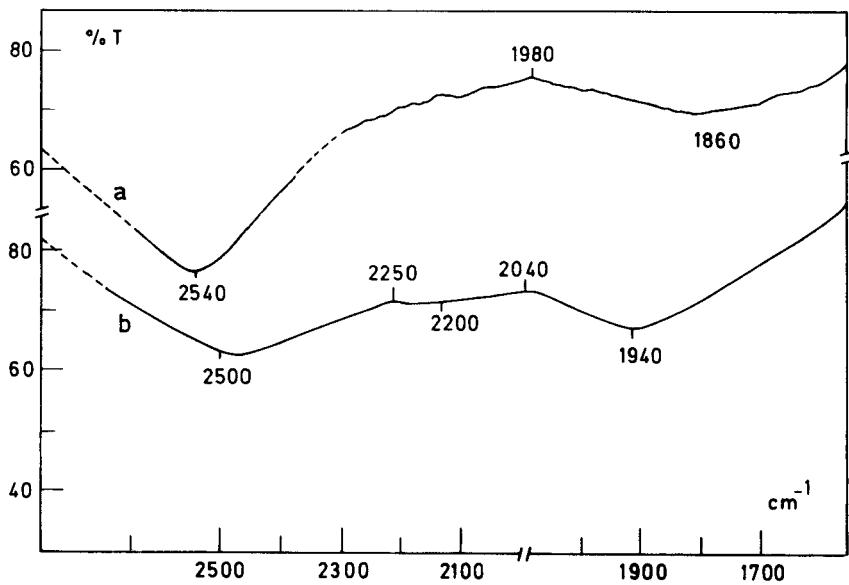


FIG. 1 IR spectrum (2800 cm^{-1}) of TCMB dissolved
 a) in cyclohexane ($C = 0.1 \text{ M}$, $d = 0.6 \text{ mm}$)
 b) in $\text{C}_2\text{H}_4\text{Cl}_2$ ($C = 0.5 \text{ M}$, $d = 0.3 \text{ mm}$)
 ----- indicates an absorption of the solvent.

levels and W the Fermi coupling coefficient⁸. The W values can be computed from the expression of Bertran et al.⁹ based on the assumption that the intensity of the forbidden transition is zero :

$$R = \frac{\Delta + (\Delta^2 - 4W^2)^{1/2}}{\Delta - (\Delta^2 - 4W^2)^{1/2}}$$

The real frequencies of the two components of the Fermi doublet are calculated from the equation

$$\nu_{\text{OH}}^{\text{O}} = \frac{\nu_{\text{OH}}^{\text{S}} + \nu_{\text{F}}}{2} \pm \frac{\nu_{\text{OH}}^{\text{S}} - \nu_{\text{F}}}{2} \frac{R-1}{R+1}$$

The computed values of W , Δ , $\nu_{\text{OH}}^{\text{O}}$ and $\nu_{\text{F}}^{\text{O}}$ are indicated

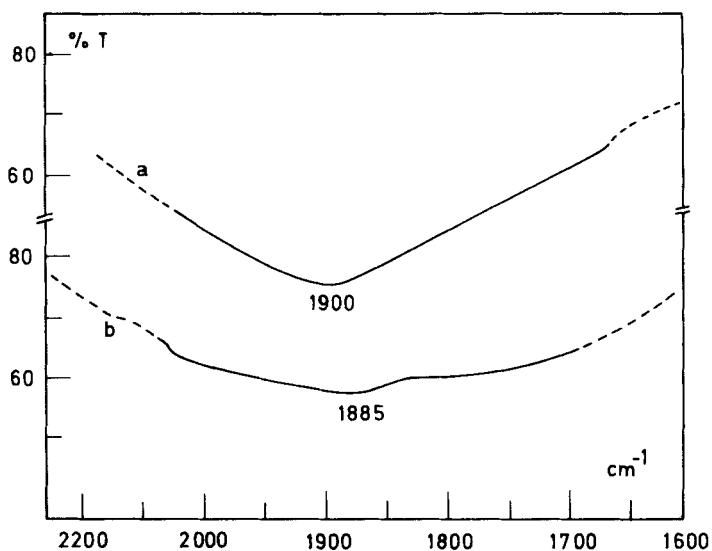


FIG. 2 IR spectrum ($2200-1600 \text{ cm}^{-1}$) of TCMB_D dissolved
 a) in CS_2 ($C = 0.17 \text{ M}$, $d = 0.3 \text{ mm}$)
 b) in $\text{C}_2\text{H}_4\text{Cl}_2$ ($C = 0.22 \text{ M}$, $d = 0.4 \text{ mm}$)

TABLE 1 Experimental ν_{OH}^s , ν_F , Δ , R and ν_{OD} values

Solvent	ν_{OH}^s (cm^{-1})	ν_F (cm^{-1})	Δ	R	ν_{OD} (cm^{-1})
n-hexane	2560	1850	710	10.5	1945
cyclohexane	2540	1860	680	10.0	1935
CCl_4	2510	1870	640	8.6	1915
C_2Cl_4	2510	1880	630	8.3	1915
CS_2	2500	1880	620	7.8	1900
C_2HCl_3	2500	1920	580	5.9	1900
CHCl_3	2490	1940	550	4.5	1885
CH_2Br_2	2500	1940	560	4.2	1885
$\text{C}_2\text{H}_4\text{Cl}_2$	2500	1940	560	3.4	1885
CH_3CN	2470	1940	530	2.9	1880

TABLE 2 W , Δ_O , ν_O^O , ν_F^O , ν_O^O/ν_{OD} and A_{OH}/A_{OD} values

Solvent	W (cm^{-1})	Δ_O (cm^{-1})	ν_O^O (cm^{-1})	ν_F^O (cm^{-1})	ν_O^O/ν_{OD}	A_{OH}/A_{OD} *
n-hexane	200	586	2491	1912	1.281	1.93
cyclohexane	196	556	2478	1922	1.280	1.86
CCl_4	196	507	2443	1936	1.276	1.80
C_2Cl_4	196	494	2442	1948	1.275	1.84
CS_2	197	478	2424	1951	1.276	1.68
C_2HCl_3	204	412	2416	2004	1.271	1.70
CHCl_3	213	349	2392	2040	1.269	1.51
CH_2Br_2	220	345	2395	2047	1.265	1.50
$\text{C}_2\text{H}_4\text{Cl}_2$	234	305	2373	2067	1.258	1.47
CH_3CN	231	258	2334	2076	1.238	1.40**

* Approximate values owing to the broadness of the band, the absorption of the solvents and the presence of OH derivative in the deuterated base.

** The total integrated intensity of the broad absorption contains also some contribution of the ν_{NH^+} (or ν_{ND^+}) vibration which is observed at $2800-2700$ ($2100-2000$) cm^{-1} .

in table 2; this table also lists the isotopic ratio of the frequencies (ν_O^O/ν_{OD}) and of the intensities (A_{OH}/A_{OD}).

The ν_O^O values are 15 to 30 cm^{-1} lower than for the analogous 2,4,5-trichloro derivative⁷ and this shows that in TCMB_H , the strength of the intramolecular $\text{OH} \dots \text{N}$ bond is somewhat higher. This is in agreement with the increment of dipole moment brought about by hydrogen bond formation, which is 1.82 D for TCMB_H and 1.67 D for the trichloro derivative⁵.

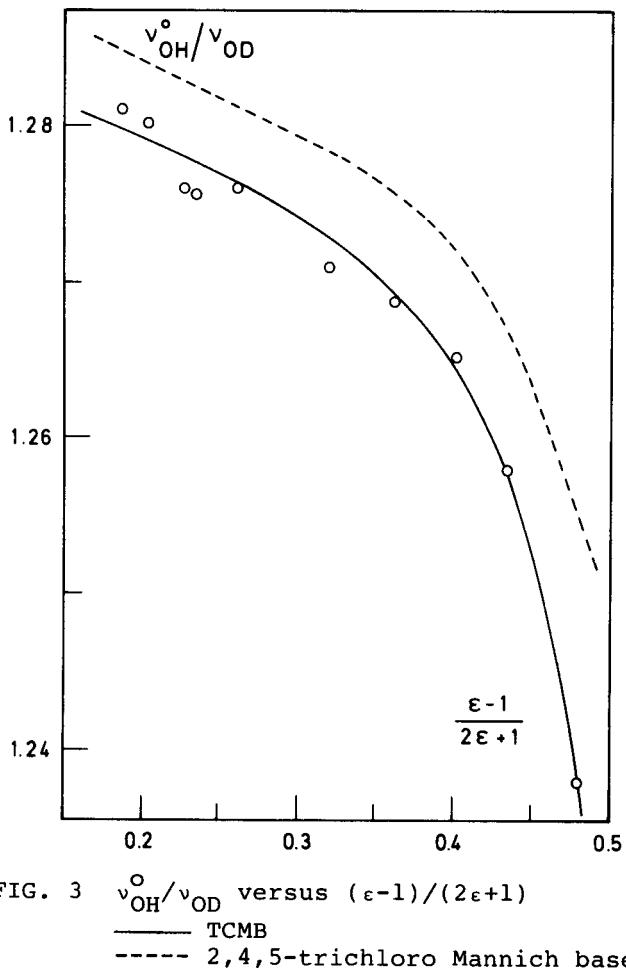


FIG. 3 v_{OH}^0/v_{OD} versus $(\epsilon-1)/(2\epsilon+1)$
 — TCMB
 - - - 2,4,5-trichloro Mannich base

The results of table 2 indicate that the strength of the intramolecular OH...N bond increases with the polarity of the medium, some proton transfer species being formed in acetonitrile. This increase is also consistent with a decrease of the isotopic ratio of the frequencies and this behaviour clearly appears from figure 3 where the ratio v_{OH}^0/v_{OD} has been plotted against

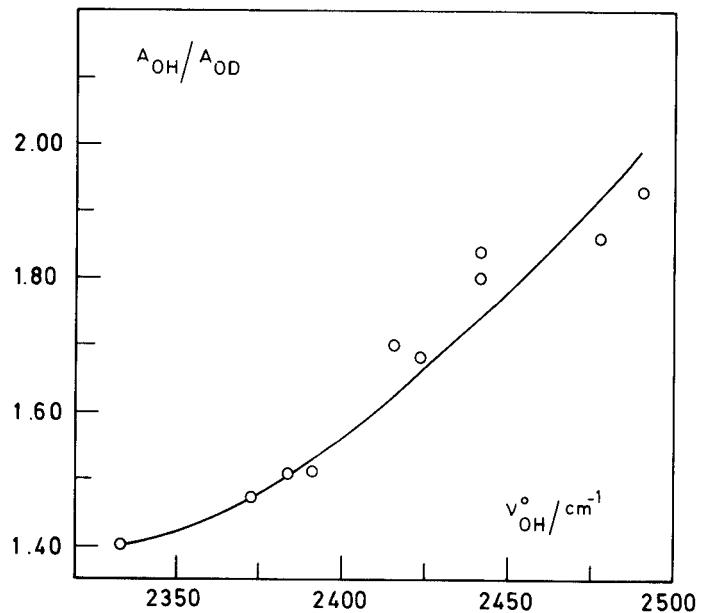


FIG. 4 A_{OH}/A_{OD} versus the computed values of v_{OH}

the Onsager parameter $(\epsilon-1)/(2\epsilon+1)$ of the solvent. As shown indeed by Novak¹¹, there is a systematic decrease of the isotopic ratio when the hydrogen bond becomes stronger. In this figure, the variation of the same ratio is shown for the 2,4,5-trichloro-Mannich base and the somewhat higher v_{OH}^o/v_{OD} values obtained for this molecule are also consistent with a weaker OH...N bond.

The results presented in table 2 also show that the isotopic ratio of the intensities is lower than the harmonic ratio. Although the experimental values are less accurate than the isotopic ratio of the frequencies, figure 4 indicates that the A_{OH}/A_{OD} values show a net tendency to decrease when the hydrogen bond becomes stronger.

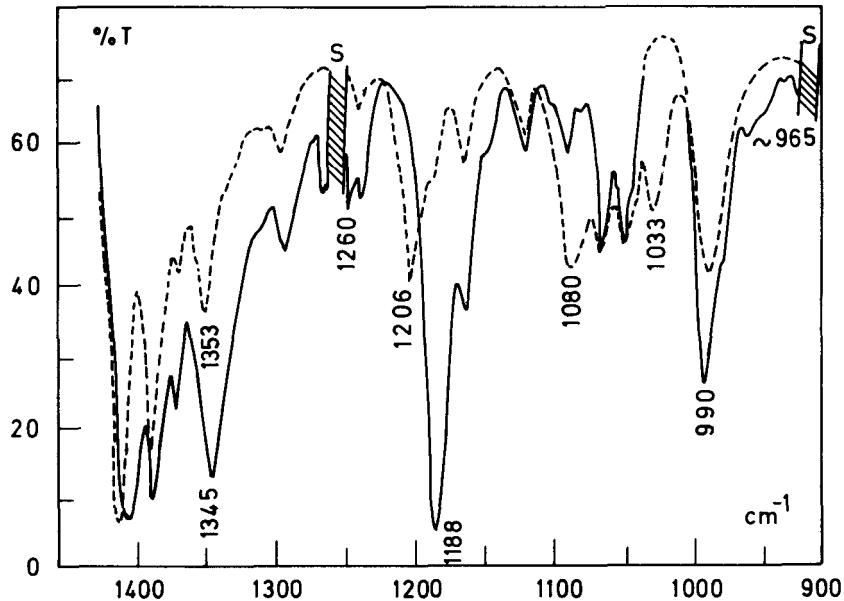


FIG. 5 IR spectrum ($1450-900\text{ cm}^{-1}$) of
 — TCMB_H (C = 0.1 M, d = 0.6 mm)
 --- TCMB_D (C = 0.1 M, d = 0.4 mm)
 Shaded area indicates absorption of the solvent.

As discussed in earlier works^{12,14}, the broad absorption observed between 3000 and 1600 cm^{-1} is typical for medium-strong hydrogen bonds and originates from a Fermi resonance between the ν_{OH} fundamental and overtones or summation frequencies of the δ_{OH} or γ_{OH} vibrations. The ir spectra ($1450-900\text{ cm}^{-1}$) of TCMB_H and its deuterated analogue dissolved in cyclohexane are reproduced in figure 5.

The δ_{OH} vibration is observed at 1188 cm^{-1} and is shifted to 1033 cm^{-1} in the OD derivative. This vibration is rather insensitive to the strength of the hydrogen bond and appears to be also mixed with the

ν_{19} (1400 cm^{-1}) and ν_{14} (1345 cm^{-1}) ring modes and with the ν_{C-O} (1260 cm^{-1}) mode.

The band at 965 cm^{-1} which disappears on deuteration is assigned to the γ_{OH} vibration. The value of this frequency is approximately half the ν_F^0 value in the same solvent ($= 961\text{ cm}^{-1}$) and from this, it can be concluded that Fermi resonance probably arises from an interaction between the ν_{OH} and $2\gamma_{OH}$ levels. In this case, the frequency of the computed maximum coincides better with the frequency of $2\gamma_{OH}$ than that of the minimum lying at 1980 cm^{-1} (figure 1). In more polar solvent, secondary bands are observed between 2300 and 2200 cm^{-1} which possibly arise from a $\nu_{OH} \leftrightarrow 2\delta_{OH}$ interaction.

Unfortunately, owing to the absorption of the solvents and the overlapping with the trigonal ring breathing mode, the γ_{OH} vibration could not be observed in all the solvents used in this work.

ACKNOWLEDGEMENTS

The authors are indebted to the University of Leuven and to the NFWO of Belgium for financial support. One of them (M.R.) thanks the K.U.Leuven for a post-doctoral fellowship.

REFERENCES

1. V.M. Schreiber, A. Koll and L. Sobczyk, *Bull.Acad. Pol., Sci.Ser.Sci.Chim.* 26, 651 (1978)
2. A. Koll, M. Rospenk and L. Sobczyk, *J.Chem.Soc., Faraday Trans.1*, 77, 2309 (1981)
3. M. Rospenk, I. Ruminskaya and V.M. Schreiber, *Zh. Prikl.Spektrosk.* 36, 756 (1982)
4. M. Rospenk, *unpublished results*
5. A. Koll, *Bull.Soc.Chim.Belg.* 93, 313 (1983)
6. A. Sucharda-Sobczyk and L. Sobczyk, *Bull.Acad.Pol. Sci., Ser.Sci.Chim.* 26, 549 (1978)

7. M. Rospenk and Th. Zeegers-Huyskens, *Spectrochim. Acta* 42A, 499 (1986)
8. G. Herzberg, *Molecular Spectra and Molecular Structure, Part II*, Van Nostrand, New York (1956)
9. J.F. Bertran, L. Vallister, L. Dobrihalova, N. Sanchez and R. Arrieta, *Spectrochim. Acta* 24A, 1765 (1968)
10. M. Rospenk and Th. Zeegers-Huyskens, *in preparation*
11. A. Novak, *Structure and Bonding*, vol.18, p.177, Springer Berlin (1974)
12. D. Hadzi and N. Kobilarov, *J. Chem. Soc. (A)* 439 (1966)
13. S.E. Odinokov and A.I. Iogansen, *Spectrochim. Acta* 28A, 2343 (1972)
14. M.F. Claydon and N. Sheppard, *Chem. Commun.* 1431 (1969)

Date Received: 11/12/86
Date Accepted: 12/18/86